## **DULWICH COLLEGE | SINGAPORE |**

# Year 9 May Assessment Physics Paper 1 Double Award

| Time allowed<br>Answer <b>all</b> qu     |         | nutes<br>in the spaces provided. You may use a calculator |
|------------------------------------------|---------|-----------------------------------------------------------|
| Total Marks<br>available /40             |         | Teacher comment:                                          |
| %                                        |         |                                                           |
| Level/Grade                              |         |                                                           |
| 1 5:                                     |         | Student Reflection                                        |
| 1. Distance-ti<br>graph                  | ime     |                                                           |
| 2. Properties of waves                   |         |                                                           |
| 3. Wave spee                             | ed      |                                                           |
| 4. Density an nature of s                |         |                                                           |
| 5. Velocity-time graph                   |         |                                                           |
| Overall ref<br>including r<br>techniques | evision |                                                           |

### Q1. The diagram shows some people waiting in a queue at a supermarket.



The queue moves forward each time a person leaves the checkout. Person X spends seven minutes in the queue before reaching the checkout. The graph shows how distance changes with time for person X.



| (a) (i  | ) What is the initial length of the queue?                                                  | (1)  |
|---------|---------------------------------------------------------------------------------------------|------|
|         | initial length =                                                                            | m    |
| (ii)    | Explain how you could use the graph to work out the number of times person X is stationary. | (2)  |
|         |                                                                                             |      |
|         |                                                                                             |      |
| (b) (i) | State the equation linking average speed, distance moved and time taken.                    |      |
|         |                                                                                             | (1)  |
| (ii)    | Calculate the average speed of person X in the queue. Give the unit.                        | (3)  |
|         | average speed = unit unit                                                                   |      |
|         | /Total for question = 7 ma                                                                  | rke\ |

- Q2.A teacher demonstrates different types of wave.
- (a) He uses a spring to demonstrate longitudinal waves.



| (i) Draw arrows on the diagram to show the directions in which the teacher moves his hand. | /4 |
|--------------------------------------------------------------------------------------------|----|
| (ii) Give an example of a longitudinal wave.                                               | (1 |
|                                                                                            | (1 |
|                                                                                            |    |

(b) The teacher then demonstrates transverse waves. He fixes a vertical rod in a pond. He places a small wooden ring on the rod. The ring floats on the water and moves up and down the rod as waves go past.



(i) On the diagram, draw a line to show one wavelength. Label your line with the letter W.

(v) The wave shown is a water wave. Give a different example of a transverse wave.

(Total for question = 10 marks)

(1)

| (a) What is meant by the term wavelength?                                                                                                                                                                                                                                                                                                                                                                  | (1)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <ul><li>(b) The waves travel across the sea at 3.0 m/s and have a frequency of 1.5 Hz.</li><li>(i) State the equation linking wave speed, frequency and wavelength.</li></ul>                                                                                                                                                                                                                              | (1)             |
| (ii) Calculate the wavelength of the waves.                                                                                                                                                                                                                                                                                                                                                                | (1)             |
| wavelength(Total for questio                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Q4. A student uses a bottle and a stopper to find the density of an unknown liquid. The stopp into the bottle and has a small diameter hole through it.  Stopper  bottle                                                                                                                                                                                                                                   | er fits tightly |
| <ul> <li>(a) This is the student's method.</li> <li>use a balance to find the mass of the bottle and stopper</li> <li>completely fill the bottle with water</li> <li>insert the stopper and dry the outside of the bottle</li> <li>use the balance to find the mass of the full bottle and stopper</li> <li>These are the student's results.</li> <li>mass of empty bottle and stopper = 63.4 g</li> </ul> |                 |
| mass of full bottle and stopper = 112.9 g  Use the student's results to determine the volume of the water in the bottle.  Give your answer to three significant figures.  [density of water = 0.998 g/cm³]                                                                                                                                                                                                 | (4)             |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                 |

volume = ..... cm<sup>3</sup>

|        | refills the bottle with the unknown liquid.                                            |        |
|--------|----------------------------------------------------------------------------------------|--------|
| He     | measures the mass of the full bottle and stopper as 143.8 g.                           |        |
| Ca     | lculate the density of the unknown liquid.                                             |        |
|        |                                                                                        | (3)    |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        |        |
|        |                                                                                        | , ,    |
|        | density of unknown liquid =                                                            | g/CIII |
| advant | tages and disadvantages of using each method to find the volume of the unknown liquid. |        |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        | (3)    |
|        |                                                                                        |        |

(b) The student empties the bottle and then dries it.

### **Q5.** A speed camera is positioned at the side of a road.

speed limit.



| © Darryl Sleath/Shutterstock                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The camera measures the speed of a vehicle on the road to determine whether the vehicle is travelling too fast.                                                                                                                                                     |
| <ul><li>(a) The camera takes two photographs of the vehicle 0.25 s apart. The photographs are used to measure the distance travelled by the vehicle during this time.</li><li>(i) State the formula linking average speed, distance moved and time taken.</li></ul> |
| (ii) In the time between the two photographs, the car travels a distance of 6.5 m. Calculate the average speed of the car.                                                                                                                                          |
| average speed = m/s                                                                                                                                                                                                                                                 |

(iii) The speed limit of the road is 80 kilometres per hour. Determine whether the car is exceeding the

(2)

(b) The velocity-time graph shows how the velocity of a lorry changes with time.



| /:\        | Eveleie b  |              |                | .4 46 - 1    |           | stant acceleration.    |
|------------|------------|--------------|----------------|--------------|-----------|------------------------|
| 111        | Exhiain no | ow ine orani | i snows in:    | ai ine iorry | mas a con | siani acceleration     |
| <b>،</b> י |            | ow tho grapi | I OHIOVVO LIIL | at this long | nao a con | otarit accordictation. |

(ii) State the formula linking acceleration, change in velocity and time taken.

(iii) Calculate the acceleration of the lorry.

acceleration = ......m/s<sup>2</sup>

(Total for question = 10 marks)

(2)

(1)

(3)